
Technical Report &. 32-553 

t '1 Damping of Quantized Longitudinal 

Plasma Oscillations 

J E T  P R O P U L S I O N  L A B O R A T O R Y  
C A L I F O R N I A  I N S T I T U T E  O F  T E C H N O L O G Y  

P A  S A  D E N A. c A L I F 0 R N I A 

April 15,1964 



Copyright 0 1964 
Jet Propulsion Laboratory 

California Institute of Technology 

Prepared Under Contract No. NAS 7-1 00 
National Aeronautics & Space Administration 



JPL TECHNICAL REPORT NO. 32-553 
I - ---==- 

CONTENTS 

i. introduction. . . . . . . . . . . . . . . 

II. The Random Phase Approximation: Plasma Damping at 
Arbitrary Temperatures . . . . . . . . . 

111. Exchange Damping . . . . . . . . . . . 

Appendix A. The RPA Dispersion Relation at Arbitrary 
Temperatures . . . . . . . . . . . . . 

Appendix B. Evaluation of Integrals in Equation 42 . . 

Nomenclature . . . . . . . . . . . . . . 

References . . . . . . . . . . . . . . . 

1 

1 

5 

9 

11 

12 

. 13 

TABLES 

1. Values of r a s  a function of N, q/qD, and 1 . . . . . . . . 4 

A-1. Values of Y,,2 and 23/2 (T ] )  as functions of T ]  for 
N = lo", lo", and . . . . . . . . . . . . . 10 

1. Values of 7 as a function of temperature for 
N = 10lG, 10li,and 10ls . . . . . , . . . . . . . 3 

A-1. Frequency vs wavelength with temperature as a parameter, 
N = 1 0 ' " .  . . . . . . . . . . . . . . . . . 10 

A-2. Frequency vs wavelength with temperature as a parameter, 
N = 1 O l R .  . . . . . . . . . . . . . . . . . 11 

B-1. Area of integration for integral in Equation 8-5 . . . . . . . 12 



JPL TECHNICAL REPORT NO. 32-553 

ABSTRACT A- 
Although the damping of longitudinal plasma oscillations has re- 

ceived considerable study for both classical plasmas and degenerate 
electron gases, expressions for damping in the degenerate systems at 
arbitrary temperatures have not been obtained. In this Report, the 
damping in the degenerate electron gas at arbitrary temperatures is 
evaluated within the random phase approximation ( RPA) in the long- 
wavelength limit. In addition, exchange damping for a plasma slightly 
above the degeneracy temperature is evaluated and is shown to be 
comparable to the RPA damping for a wide range of parameters. 

)$ lf-rPlC7R 

1. INTRODUCTION 

Damping of longitudinal plasma oscillations has been 
studied extensively for classical plasmas (Ref. 1) and, to 
a lesser extent, for degenerate plasmas at zero tempera- 
ture (Refs. 2 and 3); however, expressions for damping in 
degenerate systems at arbitrary temperatures have not 
been obtained. Dubois, Gilinsky, and Kivelson (Ref. 4) 
have recently given a general treatment of damping, 
including correlation effects, but have performed explicit 
calculations only in the classical limit and at zero tem- 
perature. The damping of electron plasma oscillations 
near the degeneracy temperature has been considered by 

Moms (Ref. S), but his calculation, based on the random 
phase approximation (RPA) discussed in Ref. 6, is in- 
complete for this region, since it neglects exchange ef- 
fects. In this Report, the damping of a degenerate electron 
gas at arbitrary temperatures is evaluated within the 
RPA in the high-density, long-wavelength limit. In addi- 
tion, exchange damping for a plasma near the degeneracy 
temperature is evaluated and shown to be comparable to 
the RPA damping coefficient for a wide range of param- 
eters. The results obtained by the present authors in this 
part of the analysis have been published (Ref. 7). 

II. THE RANDOM PHASE APPROXIMATION: PLASMA 
DAMPING AT ARBITRARY TEMPERATURES 

The damping of electron plasma oscillations can be 
easily evaluated for arbitrary temperatures by making 
the random phase approximation: that is, all correlation 
and exchange effects are ignored. Physically, this assump- 
tion is valid for very-high-density degenerate electron 
gases or, alternatively, for low-density, high-temperature 
classical systems. 

The RPA dispersion relation for quantized longitudinal 
plasma oscillations has been calculated many times (Ref. 
2). One has the expression 

(1) 
AF d3k 

m 2m 
- 

1 
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where 

Ne' = &- 
IJ m 

A F = F ( k + q ) - F ( k )  ( 3 )  

Here, F is the electron equilibrium distribution func- 
tion, N is the electron density, e and m are the electron 
charge and mass, respectively, and A is the Planck con- 
stant divided by 2r.  In addition, W and q are the frequency 
and wave vector, respectively, of the plasma oscillation. 

The damping of the plasma wave can be obtained in 
the usual manner by assuming that W has a small positive 
imaginary part I', and by expanding the denominator of 
the integrand in Eq. 1. To lowest order in r, one obtains 

where 

f i k * q  f i q  or D = -  + - - -  
mq 2m q 

and 
w = w , + i r  

(4) 

In Eq. 4, P indicates that the principal value of the inte- 
gral is to be taken. Equating the real and imaginary parts 
of Eq. 4 to zero, we find 

(7) 

and 

r =  

The dispersion relation for w,, given by Eq. 7, is needed 
for calculation of the damping. An analysis of this quan- 
tity for arbitrary temperature is presented in Appendix A. 

While the principal-value integrals in Eqs. 7 and 8 
cannot be evaluated analytically, for the purposes con- 
sidered here it is sufficient to make the long-wavelength 
approximation (Ref. 8). Near a temperature of O'K, this 
amounts to assuming that q < < qp,  where 

2 

is the Fermi wave number and cp  is the Fermi energy. At 
temperatures above the degeneracy temperature, the cut- 
off wave number is taken to be the Debye wave number, 

Here, K is the Boltzmann constant, and T is the absolute 
temperature. Within this approximation, the denomi- 
nator of Eq. 8, obtained by differentiating Eq. 7, becomes 

2?i q' 

Although the results obtained thus far can be applied to 
any type of quantum system, the most interesting physical 
example is the electron gas, for which the distribution 
function is 

n 

where 
Z Z  

andli2p/2m is the chemical potential. 

The evaluation of the integral in the numerator of Eq. 8 
is trivial. For the damping, one obtains 

where 

d = q / 2  (15) 

As can be seen, the damping is zero at q = 0. For tem- 
peratures near zero, we replace p by its zero-temperature 
value', po = 4:. 

For small q ,  (Q + a)'>p0. As q becomes larger, we 
reach the value q1 where 

qj, - (Q1 - el)' = 0 (16) 

For a still larger value of q,  for example, q2, 
q: - (Q2 + e.)' = 0 

Near zero temperature, E is very large. Thus, between q1  
and q2, the numerator of the logarithm is becoming very 

'This value can be found from the analysis in Appendix A. 
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large while the denominator is approaching 2. In the 
limit T+O, r + O  for q < ql ,  but r+ co at q = ql.. For 
temperatures near zero, one would expect this value to 
be a good estimate for the cutoff. Using Eq. 16, one finds 
for this cutoff wave number 

Since the condition €or the validity of the RPA is fro, 
< <+, we have 

At non-zero temperatures, Eq. 13 may be expanded in 
the long-wavelength approximation to obtain 

0-1 

ii cop 
X sinh- 2r T 

One can see from Eq. 19 that specification of the chemical 
potential, a function of temperature and density, is suffi- 
cient to determine the damping. In Fig. 1 (with addi- 
tional information in Table A-1) one finds curves of e p  vs T 
for different densities. By use of these curves and Ea_. A-6. 
the damping was obtained for several values of N, q/qF 
and T, and is given in Table 1. For temperatures below 
the degeneracy temperature, the damping is seen to be 
very small. As the temperature of the system is increased, 
exp ep can be replaced by its high-temperature limit 
(Eq. A-10). At the degeneracy temperature, replacing 
exp ep by the high-temperature limit would lead to an 

TEMPERATURE, OK 
IO' x 102 X 

Fig. 1. Values of 1 a s  a function of temperature for N = lo", and lo1* 
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N = 10" 
TITO 

r ( q / q D  = 0.1) r ( q / q D  = 0.2) 

0.5 1.41 x 1 0 - ~ 3  6.58 X lo-'' 
1 2.22 x lo-** 5.36 X lo-' 
3 1.27 x lo-* 4.20 x 
10 3.52 x 1.86 x 1 0 - ~  

underestimate of 35%. However, at T = 2T,, the error is 
only 5 % .  Equation 19 then becomes 

obtained by Morris (Ref. 5). In the classical limit, one 
obtains the usual Landau damping. Morris has shown 
that, for temperatures slightly above the degeneracy tern- 
perature and densities below 10'" electrons/cm3, the 
damping obtained from Eq. 20 can be much larger than 
the classical damping at the same temperature and den- 
sity. Thus, in this region, the quantum aspect of the 
damping cannot be ignored. 

- 

8 (4 A d 3  
r =  - , / T L ( ~ )  s i n h a e x p ( - I $ $ )  6 

 KT 2 q' 

(20) 

If W~ is replaced by up, this is the same expression as that 

N = 10'' 

r lqIq0 = 0.1) r b / q D  = 0.21 

7.29 x 3.39 x lo-" 
1.18 x lo-*] 2.84 X lo-' 
6.30 X lo-' 2.08 x 10-~ 
1.22 x 10.~ 6.41 X 
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111. EXCHANGE DAMPING 

The RPA calculation in the previous Section is equivalent to the linearized 
Hartree approximation; that is, exchange effects are not included. However, 
vcIn Roos (Ref. 8 )  has shown that, in the transition to the classical plasma, the 
leading quantum term in the dispersion relation is due to exchange. Thus, in a 
region where quantum effects are important, one might anticipate that exchange 
corrections to the damping could also be significant. 

FoEUW<A~ voii RGGS (Ref. 9). we h d  h i  the exchange cmtribution to the 
(complex) frequency 

du du' dz u1 d%; AF,(u,, U) h F 0 ( d l ,  u')(u - u')* 
= I  I -K W; 

W l X  = - - 4m 

where 

In the expression above, w0 satisfies the RPA dispersion relation, Eq. 1. The velocity 
component u is parallel to q and u1 is perpendicular toq. Also, we write explicitly 

oo = + ir0 To< <War (24) 

w1 = o,r + ir, rl< < w l r  (25) 

We can now find r, from Eq. 22. One has 

where I,, 12, xl, and x2 are the real and imaginary parts of I and x ,  respectively. 

Before performing the calculations, we shall make two assumptions. First, we 
make the long-wavelength approximation, 9AD < < 1. In addition, we assume that 
the temperature of the system is sufficiently high that a Maxwellian distribution 
can be used. This will be a good approximation for temperatures T 2 2 To, where 
To is the degeneracy temperature (To = EJK).  

The quantity x may be calculated by differentiation of Eq. 1 with respect to q. 
Utilizing the relation 

one finds 

5 
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In order to evaluate I, we write 

(31) 1-1  I, + I, = Ill + I , ,  + I, 
with 

du du' d'u, d' U; A (u~,u)  A Fa (e;, u') (U - u')' 

[ ( u  - u'), + (VI - v;.)'] ( u  - 00.T + ")' (.' - " O r  

4 2m 4 2m 

du du' d' U, d' u;A Fo ( u ~ ,  U )  A Fo (u;, u')' (u' - u)' 
1 2  = - H- m [(u  - u')' + (VL - v;)'] 2m 

The quantity Ill has been evaluated by von Roos (Ref. 8), who obtained 

7 K 3 q 6  
60 &;m3w; I,, = - (35) 

Some care must be exercised in the evaluation of I,, in order to prevent a spurious 
divergence. The difficulty may be circumvented by writing 

and rewriting I,, as 

a a  d w' -6 (w' - mor)  - - a a w' 

1r2 q'fi w; 

4m 11, = 

Since we are using the Maxwellian distribution, we can write 

where the expansion of f o  is consistent with the long-wavelength limit. 

6 
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Also, one has 

F ,  (el) = du Fo (vl, u )  

Finally, I,, may be written 

where 

(39) 

Although this integral has not been evaluated in closed form, it is obviously 
bounded. The exponential factor appearing in I,, makes I,, << Ill, so that we can 
neglect this term. 

The evaluation of I, must also be approximate. After making the long- 
wavelength expansion, I, may be reduced to 

where 

The integrals in Eq. 42 are evaluated in Appendix B. The final result for I, is 

Thus, substituting Eqs. 35 and 45 into Eq. 26, the final result for the exchange 
damping is 

r, =- 7 (-) f i O P  ro 
60 2xT 

and, for the total damping, one has 

The exchange contribution to the total damping becomes larger than the RPA 
part when 

(48) 

7 
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But, as seen from the table of parameters presented in Ref. 5, the exchange part 
is important exactly in the same region where other quantum effects are im- 
portant: i.e., for temperatures slightly above the degeneracy temperature and 
densities below 1 0 ’ O  electrons/cm” 

Even for % 4 2 ~ T  << 1, an expansion of Eq. 19 reveals that 

r = rciansicai [ 1 + (1 + 0.7) (s)]  KT (49) 

where the contribution with the 0.7 coefficient results from exchange. Thus, even 
for this case, exchange cannot legitimately be ignored as compared with other 
quantum effects. 

Finally, exchange can affect 
If we use the value of or, 

0, = op 1 

the damping through the appearance of a,. in r,,. 

+ [ 3  2-36 (“y m (qhD)?}  

which includes the exchange effect’, we obtain for Fo 

Thus, the factor exp -3 /2 ,  which is incorrectly ignored in many treatments of 
Landau damping (Ref. l), tends to be cancelled by exchange. Hence, again, the 
net effect of exchange is an enhancement of the damping. 

‘As pointed out by von Roos and Zmuidzinas in Ref. 9, a factor of two, resulting from a spin 
averaging, is missing from the exchange part of the expression given in Ref. 8. 

8 
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APPENDIX A 

The RPA Dispersion Relation at Arbitrary Temperatures 

The dispersion relation in the random phase approxima- 
tion, as given by Eq. 7 of Section 11, can be rewritten as 

(A-8) 

Although 3 3 / 2  and YIl2 cannot be evaluated in closed 
form, tabulated values have been given by McDougd 
and Stoner (Ref. 10) for - 4 5 T]  2 20. In Table A-1, 
values of 4,/z (‘I), 43/2 (I), and T are given for a range of 
1 for several densities. The tabulated values can be used 
in conjunction with Eq. A-8 to determine the tempera- 
ture as a function of 1 for any other density. 

In the two limiting cases of interest, Eq. A-6 reduces 
to the usual results. For the high-temperature limit, 

We now make the long-wavelength expansion of the de- 
nominator to obtain 4, N (V -k 1) e? I <  - 4  (A-9) 

so that 

(A-10) = i + s / d k F ( k ) k 4  m2 W: (A-2) 

Thus, We introduce the 4, (I) integral according to the dehition 

(A-11) 

where For the limit T = 0, 

1 >20 (A-12) 
and 

’I = e so that 

0: - 6 92 
0; 5 9: 
- _  1 + - -  (A-13) For the Fermi distribution, the dispersion relation now 

becomes 

The intermediate region between these two limits is 
shown in Figs. A-1 and A-2, where d o p  has been plotted 
as a function of 9 /9F.  Because we are in the long- 
wavelength limit, the curve has been cut off a t  
9 /9F = 0.2. However, for T > To, where To is the 
Fermi temperature, 90/9F < 1, and our curves are not 
really valid for 9 / 9 D  = 0.2. The point 9F/9D has been 
indicated on the curves for T > To. The curve T = 10 T o  
represents the high-temperature limit, Eq. A-11. 

The quantity lo is, itself, a function of temperature and 
density determined by the normalization condition; i.e., 

9 
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6.0 
7.0 
8.0 

9.0 
10.0 
11.0 
12.0 

13.0 
14.0 
15.0 
16.0 

17.0 
18.0 
19.0 
20.0 

Table A-1. Values of f7,,2 (7) and T:3,2 (7) as functions of 7 for N = lo"' ,  lo", and 10l8 

e? 

1.8 
5.0 
1.36 
3.68 

1 .oo 

2.72 
7.39 
2.00 
5.50 

1.59 
4.03 
1.09 
2.98 

8.10 
2.20 
5.99 
1.63 

4.42 
1.20 
3.27 
8.88 

2.41 
6.56 
1.78 
4.85 

- 2  
-2  
-1  
- 1  

0 

0 
0 
1 
1 

2 
2 
3 
3 

3 
4 
4 
5 

5 
6 
6 
6 

7 
7 
8 
8 

1.61 -2  
4.34 -2  
1.15 -1 
2.91 -1 

6.78 -1  

1.40 0 
2.50 0 
3.98 0 
5.77 0 

7.84 0 
1.014 1 
1.266 1 
1.54 1 

1.83 1 
2.13 1 
2.46 1 
2.80 1 

3.15 1 
3.51 1 
3.89 1 
4.29 1 

4.69 1 
5.11 1 
5.54 1 
5.98 1 

2.43 -2 
6.56 -2  
1.75 -1 
4.61 -1 

1.15 0 

2.66 0 
5.54 0 
1.04 1 
1.76 1 

2.70 1 
4.13 1 
5.83 1 
7.94 1 

1.045 2 
1.343 2 
1.69 2 
2.08 2 

2.53 2 
3.03 2 
3.58 2 
4.19 2 

4.87 2 
5.60 2 
6.40 2 
7.26 2 

N=10" 

2.37 1 
1.221 1 
6.11 0 
3.42 0 

1.96 0 

1.20 0 
8.18 -1 
5.95 - 1  
4.71 -1 

3.84 - 1  
3.25 - 1  
2.79 - 1  
2.43 -1 

2.19 -1 
1.98 -1 
1.80 - 1  
1.64 -1 

1.51 -1 
1.40 -1 
1.31 - 1  
1.23 - 1  

1.16 -1 
1.10 -1 
1.04 - 1  
9.84 -2 

N=10" 

1.097 2 
5.64 1 
2.96 1 
1.59 1 

9.09 0 

5.58 0 
3.83 0 
2.81 0 
2.18 0 

1.80 0 
1.50 0 
1.29 0 
1.14 0 

1.02 0 
9.18 -1 
8.18 -1 
7.56 -1 

7.07 -1 
6.57 -1 
6.08 - - 1  
5.70 -1 

5.46 -1 
5.21 -1 
4.84 -1 
4.59 -1 

5.11 2 
2.63 2 
1.39 2 
7.38 1 

4.22 1 

2.60 1 
1.75 1 
1.302 1 
1.011 1 

8.31 0 
6.97 0 
5.98 0 
5.27 0 

4.69 0 
4.22 0 
3.73 0 
3.53 0 

3.26 0 
3.04 0 
2.84 0 
2.65 0 

2.50 0 
2.38 0 
2.26 0 
2.13 0 

Note: In columns 2 to 7, the digit spoced to the right of o 3-digit number represents the power of IO by which to multiply the preceding 3-digit number. 

1.7 

1.6 

1.5 

1.4 

$Q 13 

1.2 

1.1 

1.0 

0.9 
x 10-2 x 10-1 x IO 

4/4F 

Fig. A-1. Frequency vs wavelength with temperature as a parameter, N = 1 0 I G  
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Consider the integral 
r 

q..q.F 

Fig. A-2. Frequency vs wavelength with temperature as a parameter, N = lots 

APPENDIX B 

Evaluation of Integrals in Equation 42 

(B-1) 

Letting 6 be the angle between vI and vi , we can write 

where E = m/KT. The 0 integration can be performed 
to give 

Because oOr/g is large, we assume that 

Then, 

A 

J o  J [  (+)* +.I E 

The area of integration is indicated in Fig. B-1. Changing 
the order of integration, we have 

(B-6) 
For large lower limit, the integral can be expanded to give 
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The integral I 

can be evaluated in the same way to give 

e 

F 

fi 

k 

m 

N 

Q 

90 

9 F  

RPA 

T 

U 

01 

r 
6 

X 

Fig. 6-1. Area of integration for integral in 
Equation 8-5 

NOMENCLATURE 

electron charge 

electron equilibrium distribution function 

Planck constant divided by 2 T 

particle momentum vector 

electron mass 

electron density 

wave vector of plasma oscillation 

Debye wave number 

Fermi wave number 

random phase approximation 

absolute temperature 

electron-velocity component parallel to 'q 

electron-velocity component perpendicular to q 

small positive imaginary part of w 

Dirac delta function 

Fermi energy 

Boltzmann constant 

wave length 

frequency of plasma oscillation 
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